By Topic

A Probabilistic Wavelet System for Stochastic and Incomplete Data-Based Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhi Liu ; Guangdong Univ. of Technol., Guangzhou ; Han-Xiong Li ; Yun Zhang

A probabilistic wavelet system (PWS) is proposed to model the unknown dynamic system with stochastic and incomplete data. When compared with the traditional wavelet system, the PWS uses a novel three-domain wavelet function to make a balance among the probability, time, and frequency domains, which achieves a robust modeling performance with poor data information. The definition, transformation, multiple-resolution analysis, and implementation of the PWS are presented to construct the whole theoretical framework. Simulation studies show that the performance of the proposed PWS is superior to the traditional one in a stochastic and incomplete data environment.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:38 ,  Issue: 2 )