By Topic

Bayesian Mitigation of Sensor Position Errors to Improve Unexploded Ordnance Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stacy L. Tantum ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC ; Yongli Yu ; Leslie M. Collins

Phenomenological modeling coupled with statistical signal processing has been shown to significantly improve capabilities for discriminating unexploded ordnance (UXO) from benign clutter using electromagnetic induction (EMI) sensor data. The general premise underlying the majority of these coupled approaches is that a phenomenological model is fit to the measured data, and the parameters estimated from this model inversion, which characterize the interrogated target, are utilized in subsequent statistical signal processing algorithms to classify the target as either UXO or clutter. A potential limitation of this coupled approach is that the inversion has been shown to be sensitive to uncertainty associated with the sensor positions. When the measurement positions are uncertain, the inversion results are more variable, and consequently, discrimination performance degrades. In this letter, a Bayesian methodology is applied to estimate the desired features from the measured data. This method explicitly acknowledges that uncertainty in the sensor positions exists and incorporates this knowledge to find the maximum-likelihood feature estimates by integrating over the uncertain measurement positions. Due to the high dimensionality of the integration, Monte Carlo integration, a statistical technique to estimate the value of an integral, is employed. Simulation results show that this Bayesian approach in mitigating sensor position uncertainty produces features with lower variability and, therefore, provides improved discrimination performance.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:5 ,  Issue: 1 )