By Topic

Multi-agent Reinforcement Learning Using Strategies and Voting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Partalas, I. ; Aristotle Univ. of Thessaloniki, Thessaloniki ; Feneris, I. ; Vlahavas, L.

Multiagent learning attracts much attention in the past few years as it poses very challenging problems. Reinforcement Learning is an appealing solution to the problems that arise to Multi Agent Systems (MASs). This is due to the fact that Reinforcement Learning is a robust and well suited technique for learning in MASs. This paper proposes a multi-agent Reinforcement Learning approach, that uses coordinated actions, which we call strategies and a voting process that combines the decisions of the agents, in order to follow a strategy. We performed experiments to the predator-prey domain, comparing our approach with other multi-agent Reinforcement Learning techniques, getting promising results.

Published in:

Tools with Artificial Intelligence, 2007. ICTAI 2007. 19th IEEE International Conference on  (Volume:2 )

Date of Conference:

29-31 Oct. 2007