By Topic

k-Attractors: A Clustering Algorithm for Software Measurement Data Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Clustering is particularly useful in problems where there is little prior information about the data under analysis. This is usually the case when attempting to evaluate a software system's maintainability, as many dimensions must be taken into account in order to reach a conclusion. On the other hand partitional clustering algorithms suffer from being sensitive to noise and to the initial partitioning. In this paper we propose a novel partitional clustering algorithm, k-Attractors. It employs the maximal frequent itemset discovery and partitioning in order to define the number of desired clusters and the initial cluster attractors. Then it utilizes a similarity measure which is adapted to the way initial attractors are determined. We apply the k-Attractors algorithm to two custom industrial systems and we compare it with WEKA 's implementation of K-Means. We present preliminary results that show our approach is better in terms of clustering accuracy and speed.

Published in:

Tools with Artificial Intelligence, 2007. ICTAI 2007. 19th IEEE International Conference on  (Volume:1 )

Date of Conference:

29-31 Oct. 2007