By Topic

A two-dimensional transmission line matrix microwave field simulator using new concepts and procedures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
So, P.P.M. ; Dept. of Electr. Eng., Ottawa Univ., Ont., Canada ; Eswarappa ; Hoefer, W.J.R.

A two-dimensional field simulator for microwave circuit modeling is described. It incorporates a number of recently developed concepts and advanced transmission line matrix (TLM) procedures. In particular, a discrete Green's function concept based on P.B. John's and K. Akhlarzad's time-domain diakoptics is realized, providing a high level of processing power through modularization of large structures at the field level, simulation of wideband matched loads or absorbing walls, modeling of frequency-dispersive boundaries in the time domain, and large-scale numerical preprocessing of passive structures. Nonlinear field modeling concepts are also implemented in the TLM field simulator. It can analyze two-dimensional circuits of arbitrary geometry containing both linear and nonlinear media. The circuit topology is input graphically. Both time-domain and frequency-domain responses can be computed and displayed. The capabilities and limitations of the simulator are discussed, and several microstrip and waveguide components are modeled to demonstrate its important features

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:37 ,  Issue: 12 )