Cart (Loading....) | Create Account
Close category search window
 

Broad-band distributed amplifier impedance-matching techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Cioffi, K.R. ; Rockwell Int. Corp., Anaheim, CA, USA

A circuit concept is developed which allows impedance transformations to be performed over extremely broad bandwidths. The transformation is obtained by coupling one or more input or output lines of a distributed amplifier into several output or input lines, respectively. The circuit technique is demonstrated by results for an amplifier for a 1:2 impedance transformation over a 2-20-GHz bandwidth. The amplifier yields a voltage standing wave ratio (VSWR) of better than 1.7:1 into 25 Ω at the input and better than 1.5:1 into 50 Ω at the output while maintaining a gain of 9±1 dB. An application of the technique to the broadband impedance-matching problem of a laser diode driver is discussed. The circuit has a gain of 8.5±1 dB from 0.5 to 12.5 GHz and better than 10 dB return loss at both the input and output

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:37 ,  Issue: 12 )

Date of Publication:

Dec 1989

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.