By Topic

Multispectral Imaging Using Multiplexed Illumination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Park, Jong-Il ; Hanyang University. jipark@hanyang.ac.kr ; Lee, Moon-Hyun ; Grossberg, Michael D. ; Nayar, Shree K.

Many vision tasks such as scene segmentation, or the recognition of materials within a scene, become considerably easier when it is possible to measure the spectral reflectance of scene surfaces. In this paper, we present an efficient and robust approach for recovering spectral reflectance in a scene that combines the advantages of using multiple spectral sources and a multispectral camera. We have implemented a system based on this approach using a cluster of light sources with different spectra to illuminate the scene and a conventional RGB camera to acquire images. Rather than sequentially activating the sources, we have developed a novel technique to determine the optimal multiplexing sequence of spectral sources so as to minimize the number of acquired images. We use our recovered spectral measurements to recover the continuous spectral reflectance for each scene point by using a linear model for spectral reflectance. Our imaging system can produce multispectral videos of scenes at 30fps. We demonstrate the effectiveness of our system through extensive evaluation. As a demonstration, we present the results of applying data recovered by our system to material segmentation and spectral relighting.

Published in:

Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on

Date of Conference:

14-21 Oct. 2007