By Topic

Multilinear Projection for Appearance-Based Recognition in the Tensor Framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vasilescu, M.A.O. ; Massachusetts Inst. of Technol., Cambridge ; Terzopoulos, D.

Numerical multilinear (tensor) algebra is a principled mathematical approach to disentangling and explicitly and parsimoniously representing the essential factors or modes of image formation, among them illumination, scene geometry, and imaging, thereby dramatically improving the performance of appearance-based recognition. Generalizing concepts from linear (matrix) algebra, we define the identity tensor and the pseudo-inverse tensor and we employ them to develop a multilinear projection algorithm, which is natural for performing recognition in the tensor algebraic framework. Our multilinear projection algorithm simultaneously projects an unlabeled test image into multiple constituent mode spaces spanned by learned, mode-specific basis sets in order to infer its mode labels. Multilinear projection is applied to unconstrained facial image recognition, where the mode labels are person identity, viewpoint, illumination, etc.

Published in:

Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on

Date of Conference:

14-21 Oct. 2007