Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Graph Based Discriminative Learning for Robust and Efficient Object Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaoqin Zhang ; Inst. of Autom., Beijing ; Weiming Hu ; Maybank, S. ; Xi Li

Object tracking is viewed as a two-class 'one-versus-rest' classification problem, in which the sample distribution of the target is approximately Gaussian while the background samples are often multimodal. Based on these special properties, we propose a graph embedding based discriminative learning method, in which the topology structures of graphs are carefully designed to reflect the properties of the sample distributions. This method can simultaneously learn the subspace of the target and its local discriminative structure against the background. Moreover, a heuristic negative sample selection scheme is adopted to make the classification more effective. In tracking procedure, the graph based learning is embedded into a Bayesian inference framework cascaded with hierarchical motion estimation, which significantly improves the accuracy and efficiency of the localization. Furthermore, an incremental updating technique for the graphs is developed to capture the changes in both appearance and illumination. Experimental results demonstrate that, compared with two state-of-the-art methods, the proposed tracking algorithm is more efficient and effective, especially in dynamically changing and clutter scenes.

Published in:

Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on

Date of Conference:

14-21 Oct. 2007