By Topic

Two-View Motion Segmentation by Mixtures of Dirichlet Process with Model Selection and Outlier Removal

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yong-Dian Jian ; Institute of Information Science, Academia Sinica, Taipei, Taiwan ; Chu-Song Chen

This paper presents a novel motion segmentation algorithm on the basis of mixture of Dirichlet process (MDP) models, a kind of nonparametric Bayesian framework. In contrast to previous approaches, our method consider motion segmentation and its model selection regarding to the number of motion models as an indivisible problem. The proposed algorithm can simultaneously infer the number of motion models, estimate the cluster memberships of correspondence points, and identify the outliers of input data. The key idea is to use MDP models to fully exploit the epipolar constraints before making premature decisions about the number motion models. To handle outliers efficiently, we then incorporate RANSAC within the inference process of MDP models and make them take the advantages of each other. In the experiments, we compare the proposed algorithm with naive RANSAC, GPCA and Schindler's method on both synthetic data and real image data. The experimental results show that we can handle more motions and still have satisfactory performance in the presence of various levels of noise and outlier.

Published in:

2007 IEEE 11th International Conference on Computer Vision

Date of Conference:

14-21 Oct. 2007