By Topic

Real-time Body Tracking Using a Gaussian Process Latent Variable Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shaobo Hou ; Univ. of Manchester, Manchester ; Galata, A. ; Caillette, F. ; Thacker, N.
more authors

In this paper, we present a tracking framework for capturing articulated human motions in real-time, without the need for attaching markers onto the subject's body. This is achieved by first obtaining a low dimensional representation of the training motion data, using a nonlinear dimensionality reduction technique called back-constrained GPLVM. A prior dynamics model is then learnt from this low dimensional representation by partitioning the motion sequences into elementary movements using an unsupervised EM clustering algorithm. The temporal dependencies between these elementary movements are efficiently captured by a Variable Length Markov Model. The learnt dynamics model is used to bias the propagation of candidate pose feature vectors in the low dimensional space. By combining this with an efficient volumetric reconstruction algorithm, our framework can quickly evaluate each candidate pose against image evidence captured from multiple views. We present results that show our system can accurately track complex structured activities such as ballet dancing in real-time.

Published in:

Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on

Date of Conference:

14-21 Oct. 2007