By Topic

A Seeded Image Segmentation Framework Unifying Graph Cuts And Random Walker Which Yields A New Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sinop, A.K. ; Carnegie Mellon Univ., Pittsburgh ; Grady, L.

In this work, we present a common framework for seeded image segmentation algorithms that yields two of the leading methods as special cases - The graph cuts and the random walker algorithms. The formulation of this common framework naturally suggests a new, third, algorithm that we develop here. Specifically, the former algorithms may be shown to minimize a certain energy with respect to either an l1 or an l2 norm. Here, we explore the segmentation algorithm defined by an linfin norm, provide a method for the optimization and show that the resulting algorithm produces an accurate segmentation that demonstrates greater stability with respect to the number of seeds employed than either the graph cuts or random walker methods.

Published in:

Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on

Date of Conference:

14-21 Oct. 2007