By Topic

Applications of parametric maxflow in computer vision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kolmogorov, V. ; Univ. Coll. London, London ; Boykov, Y. ; Rother, C.

The maximum flow algorithm for minimizing energy functions of binary variables has become a standard tool in computer vision. In many cases, unary costs of the energy depend linearly on parameter lambda. In this paper we study vision applications for which it is important to solve the maxflow problem for different lambda's. An example is a weighting between data and regularization terms in image segmentation or stereo: it is desirable to vary it both during training (to learn lambda from ground truth data) and testing (to select best lambda using high-knowledge constraints, e.g. user input). We review algorithmic aspects of this parametric maximum flow problem previously unknown in vision, such as the ability to compute all breakpoints of lambda and corresponding optimal configurations infinite time. These results allow, in particular, to minimize the ratio of some geometric functional, such as flux of a vector field over length (or area). Previously, such functional were tackled with shortest path techniques applicable only in 2D. We give theoretical improvements for "PDE cuts" [5]. We present experimental results for image segmentation, 3D reconstruction, and the cosegmentation problem.

Published in:

Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on

Date of Conference:

14-21 Oct. 2007