By Topic

Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Given a query image of an object, our objective is to retrieve all instances of that object in a large (1M+) image database. We adopt the bag-of-visual-words architecture which has proven successful in achieving high precision at low recall. Unfortunately, feature detection and quantization are noisy processes and this can result in variation in the particular visual words that appear in different images of the same object, leading to missed results. In the text retrieval literature a standard method for improving performance is query expansion. A number of the highly ranked documents from the original query are reissued as a new query. In this way, additional relevant terms can be added to the query. This is a form of blind rele- vance feedback and it can fail if 'outlier' (false positive) documents are included in the reissued query. In this paper we bring query expansion into the visual domain via two novel contributions. Firstly, strong spatial constraints between the query image and each result allow us to accurately verify each return, suppressing the false positives which typically ruin text-based query expansion. Secondly, the verified images can be used to learn a latent feature model to enable the controlled construction of expanded queries. We illustrate these ideas on the 5000 annotated image Oxford building database together with more than 1M Flickr images. We show that the precision is substantially boosted, achieving total recall in many cases.

Published in:

Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on

Date of Conference:

14-21 Oct. 2007