By Topic

What, where and who? Classifying events by scene and object recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Li-Jia Li ; Univ. of Illinois at Urbana-Champaign, Champaign ; Li Fei-Fei

We propose a first attempt to classify events in static images by integrating scene and object categorizations. We define an event in a static image as a human activity taking place in a specific environment. In this paper, we use a number of sport games such as snow boarding, rock climbing or badminton to demonstrate event classification. Our goal is to classify the event in the image as well as to provide a number of semantic labels to the objects and scene environment within the image. For example, given a rowing scene, our algorithm recognizes the event as rowing by classifying the environment as a lake and recognizing the critical objects in the image as athletes, rowing boat, water, etc. We achieve this integrative and holistic recognition through a generative graphical model. We have assembled a highly challenging database of 8 widely varied sport events. We show that our system is capable of classifying these event classes at 73.4% accuracy. While each component of the model contributes to the final recognition, using scene or objects alone cannot achieve this performance.

Published in:

Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on

Date of Conference:

14-21 Oct. 2007