By Topic

Learning Globally-Consistent Local Distance Functions for Shape-Based Image Retrieval and Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Frome, A. ; EECS, UC Berkeley. andrea.frome@gmail.com ; Singer, Y. ; Fei Sha ; Malik, J.

We address the problem of visual category recognition by learning an image-to-image distance function that attempts to satisfy the following property: the distance between images from the same category should be less than the distance between images from different categories. We use patch-based feature vectors common in object recognition work as a basis for our image-to-image distance functions. Our large-margin formulation for learning the distance functions is similar to formulations used in the machine learning literature on distance metric learning, however we differ in that we learn local distance functions¿a different parameterized function for every image of our training set¿whereas typically a single global distance function is learned. This was a novel approach first introduced in Frome, Singer, & Malik, NIPS 2006. In that work we learned the local distance functions independently, and the outputs of these functions could not be compared at test time without the use of additional heuristics or training. Here we introduce a different approach that has the advantage that it learns distance functions that are globally consistent in that they can be directly compared for purposes of retrieval and classification. The output of the learning algorithm are weights assigned to the image features, which is intuitively appealing in the computer vision setting: some features are more salient than others, and which are more salient depends on the category, or image, being considered. We train and test using the Caltech 101 object recognition benchmark.

Published in:

Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on

Date of Conference:

14-21 Oct. 2007