By Topic

Learning Graph Matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tiberio S. Caetano ; Statistical Machine Learning Program, NICTA and ANU, Canberra ACT 0200, Australia ; Li Cheng ; Quoc V. Le ; Alex J. Smola

As a fundamental problem in pattern recognition, graph matching has found a variety of applications in the field of computer vision. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs. There are many ways in which the problem has been formulated, but most can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility functions and a quadratic term encodes edge compatibility functions. The main research focus in this theme is about designing efficient algorithms for solving approximately the quadratic assignment problem, since it is NP-hard. In this paper, we turn our attention to the complementary problem: how to estimate compatibility functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would manually provide. We present a method for learning graph matching: the training examples are pairs of graphs and the "labels" are matchings between pairs of graphs. We present experimental results with real image data which give evidence that learning can improve the performance of standard graph matching algorithms. In particular, it turns out that linear assignment with such a learning scheme may improve over state-of-the-art quadratic assignment relaxations. This finding suggests that for a range of problems where quadratic assignment was thought to be essential for securing good results, linear assignment, which is far more efficient, could be just sufficient if learning is performed.

Published in:

2007 IEEE 11th International Conference on Computer Vision

Date of Conference:

14-21 Oct. 2007