By Topic

Predicting the Performance of Low-Loss On-Chip Inductors Realized Using Carbon Nanotube Bundles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Arthur Nieuwoudt ; Rice Univ., Houston ; Yehia Massoud

Within the analog realm, integrated inductors continue to limit the performance of mixed-signal systems. To improve the performance of integrated inductors for future mixed-signal systems, alternative technologies must be investigated. In this paper, we propose low-loss on-chip inductors leveraging single-walled carbon nanotube (SWCNT) bundles, which have the potential to provide conductors with significantly lower resistivity than traditional copper technology. We develop a model for high-frequency current redistribution in SWCNT bundles, which we find can have a large effect on the resistance and quality factor of nanotube-based inductors. Leveraging a compact RLC circuit model, we examine the potential quality factor improvement provided by nanotube-based inductors over copper-based inductors for mixed-signal circuit applications. The results indicate that the optimized SWCNT bundle-based inductors can potentially provide a significant increase in quality factor. To demonstrate the performance advantages of optimized nanotube-based inductors, we find that their increased quality factors can lead to a noise figure and power consumption improvement in low-noise amplifiers, which are critical radio frequency circuits in integrated wireless receivers. If the integrated circuit fabrication challenges associated with high-density nanotube-based wires can be overcome, nanotube-based inductors could enable future mixed-signal and wireless systems with greater performance.

Published in:

IEEE Transactions on Electron Devices  (Volume:55 ,  Issue: 1 )