Cart (Loading....) | Create Account
Close category search window
 

Nanometer Device Scaling in Subthreshold Logic and SRAM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hanson, S. ; Michigan Univ., Ann Arbor ; Mingoo Seok ; Sylvester, D. ; Blaauw, D.

Subthreshold circuit design is promising for future ultralow-energy sensor applications as well as highly parallel high-performance processing. Device scaling has the potential to increase speed in addition to decreasing both energy and cost in subthreshold circuits. However, no study has yet considered whether device scaling to 45 nm and beyond will be beneficial for subthreshold logic. We investigate the implications of device scaling on subthreshold logic and SRAM and And that the slow scaling of gate-oxide thickness leads to a 60% reduction in Ion/Ioff between the 90- and 32-nm device generations. We highlight the effects of this device degradation on noise margins, delay, and energy. We subsequently propose an alternative scaling strategy and demonstrate significant improvements in noise margins, delay, and energy in sub-Vth circuits. Using both optimized and unoptimized subthreshold device models, we explore the robustness of scaled subthreshold SRAM. We use a simple variability model and find that even small memories become unstable at advanced technology nodes. However, the simple device optimizations suggested in this paper can be used to improve nominal read noise margins by 64% at the 32-nm node.

Published in:

Electron Devices, IEEE Transactions on  (Volume:55 ,  Issue: 1 )

Date of Publication:

Jan. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.