Cart (Loading....) | Create Account
Close category search window

Optic Disc Detection From Normalized Digital Fundus Images by Means of a Vessels' Direction Matched Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Optic disc (OD) detection is a main step while developing automated screening systems for diabetic retinopathy. We present in this paper a method to automatically detect the position of the OD in digital retinal fundus images. The method starts by normalizing luminosity and contrast through out the image using illumination equalization and adaptive histogram equalization methods respectively. The OD detection algorithm is based on matching the expected directional pattern of the retinal blood vessels. Hence, a simple matched filter is proposed to roughly match the direction of the vessels at the OD vicinity. The retinal vessels are segmented using a simple and standard 2-D Gaussian matched filter. Consequently, a vessels direction map of the segmented retinal vessels is obtained using the same segmentation algorithm. The segmented vessels are then thinned, and filtered using local intensity, to represent finally the OD-center candidates. The difference between the proposed matched filter resized into four different sizes, and the vessels' directions at the surrounding area of each of the OD-center candidates is measured. The minimum difference provides an estimate of the OD-center coordinates. The proposed method was evaluated using a subset of the STARE project's dataset, containing 81 fundus images of both normal and diseased retinas, and initially used by literature OD detection methods. The OD-center was detected correctly in 80 out of the 81 images (98.77%). In addition, the OD-center was detected correctly in all of the 40 images (100%) using the publicly available DRIVE dataset.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:27 ,  Issue: 1 )

Date of Publication:

Jan. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.