Cart (Loading....) | Create Account
Close category search window
 

Supervised Enhancement Filters: Application to Fissure Detection in Chest CT Scans

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In medical image processing, many filters have been developed to enhance certain structures in 3-D data. In this paper, we propose to use pattern recognition techniques to design more optimal filters. The essential difference with previous approaches is that we provide a system with examples of what it should enhance and suppress. This training data is used to construct a classifier that determines the probability that a voxel in an unseen image belongs to the target structure(s). The output of a rich set of basis filters serves as input to the classifier. In a feature selection process, this set is reduced to a compact, efficient subset. We show that the output of the system can be reused to extract new features, using the same filters, that can be processed by a new classifier. Such a multistage approach further improves performance. While the approach is generally applicable, in this work the focus is on enhancing pulmonary fissures in 3-D computed tomography (CT) chest scans. A supervised fissure enhancement filter is evaluated on two data sets, one of scans with a normal clinical dose and one of ultra-low dose scans. Results are compared with those of a recently proposed conventional fissure enhancement filter. It is demonstrated that both methods are able to enhance fissures, but the supervised approach shows better performance; the areas under the receiver operating characteristic (ROC) curve are 0.98 versus 0.90, for the normal dose data and 0.97 versus 0.87 for the ultra low dose data, respectively.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:27 ,  Issue: 1 )

Date of Publication:

Jan. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.