Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

System Architecture and Implementation of MIMO Sphere Decoders on FPGA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xinming Huang ; Worcester Polytech. Inst., Worcester ; Cao Liang ; Jing Ma

Multiple-input-multiple-output (MIMO) systems use multiple antennas in both transmitter and receiver ends for higher spectrum efficiency. The hardware implementation of MIMO detection becomes a challenging task as the computational complexity increases. This paper presents the architectures and implementations of two typical sphere decoding algorithms, including the Viterbo-Boutros (VB) algorithm and the Schnorr-Euchner (SE) algorithm. Hardware/software codesign technique is applied to partition the decoding algorithm on a single field-programmable gate array (FPGA) device. Three levels of parallelism are explored to improve the decoding rate: the concurrent execution of the channel matrix preprocessing on an embedded processor and the decoding functions on customized hardware modules, the parallel decoding of real/imaginary parts for complex constellation, and the concurrent execution of multiple steps during the closest lattice point search. The decoders for a 4times4 MIMO system with 16-QAM modulation are prototyped on a Xilinx XC2VP30 FPGA device with a MicroBlaze soft core processor. The hardware prototypes of the SE and VB algorithms show that they support up to 81.5 and 36.1 Mb/s data rates at 20 dB signal-to-noise ratio, which are about 22 and 97 times faster than their respective implementations in a digital signal processor.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:16 ,  Issue: 2 )