Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Time-Aware Web Users' Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Petridou, S.G. ; Aristotle Univ. of Thessaloniki, Thessaloniki ; Koutsonikola, V.A. ; Vakali, A.I. ; Papadimitriou, Georgios I.

Web users' clustering is a crucial task for mining information related to users' needs and preferences. Up to now, popular clustering approaches build clusters based on usage patterns derived from users' page preferences. This paper emphasizes the need to discover similarities in users' accessing behavior with respect to the time locality of their navigational acts. In this context, we present two time-aware clustering approaches for tuning and binding the page and time visiting criteria. The two tracks of the proposed algorithms define clusters with users that show similar visiting behavior at the same time period, by varying the priority given to page or time visiting. The proposed algorithms are evaluated using both synthetic and real data sets and the experimentation has shown that the new clustering schemes result in enriched clusters compared to those created by the conventional non-time-aware user clustering approaches. These clusters contain users exhibiting similar access behavior in terms not only of their page preferences but also of their access time.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 5 )