By Topic

Text Clustering with Feature Selection by Using Statistical Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yanjun Li ; Fordham Univ., Bronx ; Congnan Luo ; Chung, S.M.

Feature selection is an important method for improving the efficiency and accuracy of text categorization algorithms by removing redundant and irrelevant terms from the corpus. In this paper, we propose a new supervised feature selection method, named CHIR, which is based on the chi2 statistic and new statistical data that can measure the positive term-category dependency. We also propose a new text clustering algorithm, named text clustering with feature selection (TCFS). TCFS can incorporate CHIR to identify relevant features (i.e., terms) iteratively, and the clustering becomes a learning process. We compared TCFS and the K-means clustering algorithm in combination with different feature selection methods for various real data sets. Our experimental results show that TCFS with CHIR has better clustering accuracy in terms of the F-measure and the purity.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 5 )