By Topic

Nonnegative Matrix and Tensor Factorization [Lecture Notes]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In these lecture notes, the authors have outlined several approaches to solve a NMF/NTF problem. The following main conclusions can be drawn: 1) Multiplicative algorithms are not necessary the best approaches for NMF, especially if data representations are not very redundant or sparse. 2) Much better performance can be achieved using the FP-ALS (especially for large-scale problems), IPC, and QN methods. 3) To achieve high performance it is quite important to use the multilayer structure with multistart initialization conditions. 4) To estimate physically meaningful nonnegative components it is often necessary to use some a priori knowledge and impose additional constraints or regularization terms (to control sparsity, boundness, continuity or smoothness of the estimated nonnegative components).

Published in:

Signal Processing Magazine, IEEE  (Volume:25 ,  Issue: 1 )