By Topic

Analysis and Modeling of Hybrid Planar-Type Electromagnetic-Bandgap Structures and Feasibility Study on Power Distribution Network Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ki Hyuk Kim ; Univ. of Illinois at Urbana-Champaign, Urbana ; JosÉ E. Schutt-Aine

A unified 1D analysis model of hybrid planar-type electromagnetic-bandgap (EBG) structures is developed. Based on the analysis results, three types of hybrid design methods to reduce the cutoff frequency of the EBG structures are discussed, and design equations for their noise suppression bandwidths are derived. In order to simulate switching noise characteristics of the hybrid planar-type EBG structures, 2D circuit level models are developed and experimentally verified. With the developed circuit-level models and CMOS active switching devices, feasibility studies on the power distribution network design using the hybrid EBG structures are conducted. The hybrid EBG structure with series lumped chip inductors shows efficient noise suppression characteristics in both the frequency and time domains; however, it has potential limitations because of its generation of higher switching noise voltages depending on power supply connection configurations.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:56 ,  Issue: 1 )