Cart (Loading....) | Create Account
Close category search window

Using Address Independent Seed Encryption and Bonsai Merkle Trees to Make Secure Processors OS- and Performance-Friendly

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rogers, B. ; North Carolina State Univ., Raleigh ; Chhabra, S. ; Prvulovic, M. ; Solihin, D.

In today's digital world, computer security issues have become increasingly important. In particular, researchers have proposed designs for secure processors which utilize hardware-based memory encryption and integrity verification to protect the privacy and integrity of computation even from sophisticated physical attacks. However, currently proposed schemes remain hampered by problems that make them impractical for use in today's computer systems: lack of virtual memory and inter-process communication support as well as excessive storage and performance overheads. In this paper, we propose 1) address independent seed encryption (AISE), a counter-mode based memory encryption scheme using a novel seed composition, and 2) Bonsai Merkle trees (BMT), a novel Merkle tree-based memory integrity verification technique, to eliminate these system and performance issues associated with prior counter-mode memory encryption and Merkle tree integrity verification schemes. We present both a qualitative discussion and a quantitative analysis to illustrate the advantages of our techniques over previously proposed approaches in terms of complexity, feasibility, performance, and storage. Our results show that AISE+BMT reduces the overhead of prior memory encryption and integrity verification schemes from 12% to 2% on average, while eliminating critical system-level problems.

Published in:

Microarchitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM International Symposium on

Date of Conference:

1-5 Dec. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.