By Topic

A New Adaptive Sampling Technique for Monte Carlo Global Illumination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qing Xu ; Tianjin Univ., Tianjin ; Sbert, M. ; Feixas, M. ; Jizhou Sun

Monte Carlo is the only choice of physically correct method to compute the problem of global illumination in the field of realistic image synthesis. Adaptive sampling is an appealing tool to eliminate noise, which is one of the main problems of Monte Carlo based global illumination algorithms. In this paper, we investigate the use of entropy in the domain of information theory to measure pixel quality and to do adaptive sampling. Especially we explore the nonextensive Tsallis entropy, in which a real number q is introduced as the entropic index that presents the degree of nonextensivity, to evaluate pixel quality. By utilizing the least-squares design, an entropic index q can be obtained systematically to run adaptive sampling effectively. Implementation results show that the Tsallis entropy driven adaptive sampling significantly outperforms the existing methods. To our knowledge, this may be the first try on the systematic choice of an appropriate entropic index to Tsallis entropy in the engineering fields.

Published in:

Computer-Aided Design and Computer Graphics, 2007 10th IEEE International Conference on

Date of Conference:

15-18 Oct. 2007