By Topic

3D Shape Metamorphosis Based on T-spline Level Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huaiping Yang ; Johannes Kepler Univ., Linz ; Juttler, B.

Summary form only given. We propose a new method for 3D shape metamorphosis, where the in-between objects are constructed by using T-spline scalar functions. The use of T-spline level sets offers several advantages: First, it is convenient to handle complex topology changes without the need of model parameterization. Second, the constructed objects are smooth (C2 in our case). Third, high quality meshes can be easily obtained by using the marching triangulation method. Fourth, the distribution of the degrees of freedom can be adapted to the geometry of the object. Given one source object and one target object, we firstly find a global coordinate transformation to approximately align the two objects. The T-spline control grid is adoptively generated according to the geometry of the aligned objects, and the initial T-spline level set is found by approximating the signed distance function of the source object. Then we use an evolution process, which is governed by a combination of the signed distance function of the target object and a curvature-dependent speed function, to deform the T-spline level set until it converges to the target shape. Additional intermediate objects are inserted at the beginning/end of the sequence of generated T-spline level sets, by gradually projecting the source/target object to the initial/final T-spline level set. A fully automatic algorithm is developed for the above procedures. Experimental results are presented to demonstrate the effectiveness of our method.

Published in:

Computer-Aided Design and Computer Graphics, 2007 10th IEEE International Conference on

Date of Conference:

15-18 Oct. 2007