Cart (Loading....) | Create Account
Close category search window
 

Performance Evaluation and Benchmarking of Six-Page Segmentation Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shafait, F. ; Image Understanding & Pattern Recognition Res. Group, German Res. Center for Artificial Intell., Kaiserslautern ; Keysers, D. ; Breuel, T.M.

Informative benchmarks are crucial for optimizing the page segmentation step of an OCR system, frequently the performance limiting step for overall OCR system performance. We show that current evaluation scores are insufficient for diagnosing specific errors in page segmentation and fail to identify some classes of serious segmentation errors altogether. This paper introduces a vectorial score that is sensitive to, and identifies, the most important classes of segmentation errors (over, under, and mis-segmentation) and what page components (lines, blocks, etc.) are affected. Unlike previous schemes, our evaluation method has a canonical representation of ground-truth data and guarantees pixel-accurate evaluation results for arbitrary region shapes. We present the results of evaluating widely used segmentation algorithms (x-y cut, smearing, whitespace analysis, constrained text-line finding, docstrum, and Voronoi) on the UW-III database and demonstrate that the new evaluation scheme permits the identification of several specific flaws in individual segmentation methods.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:30 ,  Issue: 6 )

Date of Publication:

June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.