Cart (Loading....) | Create Account
Close category search window
 

Simultaneous Nonrigid Registration of Multiple Point Sets and Atlas Construction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fei Wang ; IBM Almaden Res. Center, San Jose, CA ; Vemuri, B.C. ; Rangarajan, A. ; Eisenschenk, S.J.

Groupwise registration of a set of shapes represented by unlabeled point sets is a challenging problem since, usually, this involves solving for point correspondence in a nonrigid motion setting. In this paper, we propose a novel and robust algorithm that is capable of simultaneously computing the mean shape, represented by a probability density function, from multiple unlabeled point sets (represented by finite-mixture models), and registering them nonrigidly to this emerging mean shape. This algorithm avoids the correspondence problem by minimizing the Jensen-Shannon (JS) divergence between the point sets represented as finite mixtures of Gaussian densities. We motivate the use of the JS divergence by pointing out its close relationship to hypothesis testing. Essentially, minimizing the JS divergence is asymptotically equivalent to maximizing the likelihood ratio formed from a probability density of the pooled point sets and the product of the probability densities of the individual point sets. We derive the analytic gradient of the cost function, namely, the JS-divergence, in order to efficiently achieve the optimal solution. The cost function is fully symmetric, with no bias toward any of the given shapes to be registered and whose mean is being sought. A by-product of the registration process is a probabilistic atlas, which is defined as the convex combination of the probability densities of the input point sets being aligned. Our algorithm can be especially useful for creating atlases of various shapes present in images and for simultaneously (rigidly or nonrigidly) registering 3D range data sets (in vision and graphics applications), without having to establish any correspondence. We present experimental results on nonrigidly registering 2D and 3D real and synthetic data (point sets).

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:30 ,  Issue: 11 )

Date of Publication:

Nov. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.