By Topic

A Spatially Variant White-Patch and Gray-World Method for Color Image Enhancement Driven by Local Contrast

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Edoardo Provenzi ; Dipt. di Tecnol. dellInf., Univ. degli Studi di Milano, Crema ; Carlo Gatta ; Massimo Fierro ; Alessandro Rizzi

Starting from the revolutionary Retinex by Land and McCann, several further perceptually inspired color correction models have been developed with different aims, e.g. reproduction of color sensation, robust features recognition, enhancement of color images. Such models have a differential, spatially-variant and non-linear nature and they can coarsely be distinguished between white-patch (WP) and gray-world (GW) algorithms. In this paper we show that the combination of a pure WP algorithm (RSR: random spray Retinex) and an essentially GW one (ACE) leads to a more robust and better performing model (RACE). The choice of RSR and ACE follows from the recent identification of a unified spatially-variant approach for both algorithms. Mathematically, the originally distinct non-linear and differential mechanisms of RSR and ACE have been fused using the spray technique and local average operations. The investigation of RACE allowed us to put in evidence a common drawback of differential models: corruption of uniform image areas. To overcome this intrinsic defect, we devised a local and global contrast-based and image-driven regulation mechanism that has a general applicability to perceptually inspired color correction algorithms. Tests, comparisons and discussions are presented.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:30 ,  Issue: 10 )