By Topic

Solving Systems of Linear Equations on the CELL Processor Using Cholesky Factorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kurzak, J. ; Dept. of Electr. Eng. & Comput. Sci., Tennessee Univ., Knoxville, TN ; Buttari, A. ; Dongarra, J.

The Sony/Toshiba/IBM (STI) CELL processor introduces pioneering solutions in processor architecture. At the same time it presents new challenges for the development of numerical algorithms. One is effective exploitation of the differential between the speed of single and double precision arithmetic; the other is efficient parallelization between the short vector SIMD cores. The first challenge is addressed by utilizing the well known technique of iterative refinement for the solution of a dense symmetric positive definite system of linear equations, resulting in a mixed-precision algorithm, which delivers double precision accuracy, while performing the bulk of the work in single precision. The main contribution of this paper lies in addressing the second challenge by successful thread-level parallelization, exploiting fine-grained task granularity and a lightweight decentralized synchronization. The implementation of the computationally intensive sections gets within 90 percent of peak floating point performance, while the implementation of the memory intensive sections reaches within 90 percent of peak memory bandwidth. On a single CELL processor, the algorithm achieves over 170~Gflop/s when solving a symmetric positive definite system of linear equation in single precision and over 150~Gflop/s when delivering the result in double precision accuracy.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:19 ,  Issue: 9 )