By Topic

Prediction-Based Power-Performance Adaptation of Multithreaded Scientific Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Curtis-Maury, M. ; NetApp, Inc., Research Triangle Park, NC ; Blagojevic, F. ; Antonopoulos, C.D. ; Nikolopoulos, D.S.

Computing has recently reached an inflection point with the introduction of multi-core processors. On-chip thread-level parallelism is doubling approximately every other year. Concurrency lends itself naturally to allowing a program to trade performance for power savings by regulating the number of active cores, however in several domains users are unwilling to sacrifice performance to save power. We present a prediction model for identifying energy-efficient operating points of concurrency in well-tuned multithreaded scientific applications, and a runtime system which uses live program analysis to optimize applications dynamically. We describe a dynamic, phase-aware performance prediction model that combines multivariate regression techniques with runtime analysis of data collected from hardware event counters to locate optimal operating points of concurrency. Using our model, we develop a prediction-driven, phase-aware runtime optimization scheme that throttles concurrency so that power consumption can be reduced and performance can be set at the knee of the scalability curve of each program phase. The use of prediction reduces the overhead of searching the optimization space while achieving near-optimal performance and power savings. A thorough evaluation of our approach shows a reduction in power consumption of 10.8% simultaneous with an improvement in performance of 17.9%, resulting in energy savings of 26.7%.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:19 ,  Issue: 10 )