By Topic

Local Vote Decision Fusion for Target Detection in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Katenka, N. ; Univ. of Michigan, Ann Arbor ; Levina, E. ; Michailidis, G.

This paper examines the problem of target detection by a wireless sensor network. Sensors acquire measurements emitted from the target that are corrupted by noise, and initially make individual decisions about the presence/absence of the target. We propose the local vote decision fusion algorithm, in which sensors first correct their decisions using decisions of neighboring sensors, and then make a collective decision as a network. An explicit formula that approximates the system's decision threshold for a given false alarm rate is derived using limit theorems for random fields, which provides a theoretical performance guarantee for the algorithm. We examine both distance- and nearest-neighbor-based versions of the local vote algorithm for grid and random sensor deployments and show that, in many situations, for a fixed-system false alarm, the local vote correction achieves significantly higher target detection rate than decision fusion based on uncorrected decisions. The algorithm does not depend on the signal model and is shown to be robust to different types of signal decay. We also extend this framework to temporal fusion, where information becomes available over time.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 1 )