By Topic

High-Speed VLSI Implementation of 2-D Discrete Wavelet Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chao Cheng ; Minnesota Univ., Minnesota ; Parhi, K.K.

This paper presents a systematic high-speed VLSI implementation of the discrete wavelet transform (DWT) based on hardware-efficient parallel FIR filter structures. High-speed 2-D DWT with computation time as low as N 2/12 can be easily achieved for an NtimesN image with controlled increase of hardware cost. Compared with recently published 2-D DWT architectures with computation time of N 2/3 and 2N 2/3, the proposed designs can also save a large amount of multipliers and/or storage elements. It can also be used to implement those 2-D DWT traditionally suitable for lifting or flipping-based designs, such as (9,7) and (6,10) DWT. The throughput rate can be improved by a factor of 4 by the proposed approach, but the hardware cost increases by a factor of around 3. Furthermore, the proposed designs have very simple control signals, regular structures and 100% hardware utilization for continuous images.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 1 )