Cart (Loading....) | Create Account
Close category search window

Geostatistical Solutions for Super-Resolution Land Cover Mapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Super-resolution land cover mapping aims at producing fine spatial resolution maps of land cover classes from a set of coarse-resolution class fractions derived from satellite information via, for example, spectral unmixing procedures. Based on a prior model of spatial structure or texture that encodes the expected patterns of classes at the fine (target) resolution, this paper presents a sequential simulation framework for generating alternative super-resolution maps of class labels that are consistent with the coarse class fractions. Two modes of encapsulating the prior structural information are investigated-one uses a set of indicator variogram models, and the other uses training images. A case study illustrates that both approaches lead to super-resolution class maps that exhibit a variety of spatial patterns ranging from simple to complex. Using four different examples, it is demonstrated that the structural model controls the patterns seen on the super-resolution maps, even for cases where the coarse fraction data are highly constraining.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:46 ,  Issue: 1 )

Date of Publication:

Jan. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.