By Topic

Generalized Permeability Tensor Model: Application to Barium Hexaferrite in a Remanent State for Self-Biased Circulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Philippe Gelin ; ENST Bretagne, Brest ; Patrick Queffelec

We describe a theoretical approach for determining the permeability tensor of polycrystalline ferrites regardless of their magnetization state. To take into account both the demagnetizing dynamic fields related to the magnetic domain and grain shapes and the magnetic interactions between adjoining domains and between adjoining grains, we transform the classical Landau-Lifschitz-Gilbert equation into a coupled two-equation system. We introduce statistical distribution laws for both the domain and grain demagnetizing coefficients into the calculation to take the domain and grain shape diversity into account and derive static vectorial quantities such as the internal magnetic dc field and magnetization in each domain that depends on the applied dc magnetic field from the Stoner-Wohlfarth hysteresis model. We compare results with those for existing models for various magnetized states. Then we apply the model to predict the permeability tensor behavior of barium hexaferrite thin film, especially in the remanent state, which is of great interest for the design of self-biased Y-junction circulators in the millimeter-wave range.

Published in:

IEEE Transactions on Magnetics  (Volume:44 ,  Issue: 1 )