By Topic

Frequency Response Enhancement of Optical Injection-Locked Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lau, E.K. ; Univ. of California, Berkeley ; Hyuk-Kee Sung ; Wu, M.C.

The modulation response of injection-locked lasers has been carefully analyzed, theoretically and experimentally, with a focus on the strong optical injection regime. We derive closed-form solutions to the relaxation oscillation (resonance) frequency and damping term, as well as the low-frequency damping term, and discuss design rules for maximizing resonance frequency and broadband performance. A phasor model is described in order to better explain the enhancement of the resonance frequency. Experimental curves match closely to theory. Record resonance frequency of 72 GHz and broadband results are shown.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:44 ,  Issue: 1 )