By Topic

A Highly Efficient VLSI Architecture for H.264/AVC CAVLC Decoder

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Heng-Yao Lin ; Nat. Cheng Kung Univ., Tainan ; Ying-Hong Lu ; Bin-Da Liu ; Jar-Ferr Yang

In this paper, an efficient algorithm is proposed to improve the decoding efficiency of the context-based adaptive variable length coding (CAVLC) procedure. Due to the data dependency among symbols in the decoding flow, the CAVLC decoder requires large computation time, which dominates the overall decoder system performance. To expedite its decoding speed, the critical path in the CAVLC decoder is first analyzed and then reduced by forwarding the adaptive detection for succeeding symbols. With a shortened critical path, the CAVLC architecture is further divided into two segments, which can be easily implemented by a pipeline structure. Consequently, the overall performance is effectively improved. In the hardware implementation, a low power combined LUT and single output buffer have been adopted to reduce the area as well as power consumption without affecting the decoding performance. Experimental results show that the proposed architecture surpassing other recent designs can approximately reduce power consumption by 40% and achieve three times decoding speed in comparison to the original decoding procedure suggested in the H.264 standard. The maximum frequency can be larger than 210 MHz, which can easily support the real-time requirement for resolutions higher than the HD1080 format.

Published in:

Multimedia, IEEE Transactions on  (Volume:10 ,  Issue: 1 )