By Topic

A Graphical Model for Context-Aware Visual Content Recommendation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Boutemedjet, S. ; Univ. Sherbrooke, Sherbrooke ; Ziou, D.

Existing recommender systems provide an elegant solution to the information overload in current digital libraries such as the Internet archive. Nowadays, the sensors that capture the user's contextual information such as the location and time are become available and have raised a need to personalize recommendations for each user according to his/her changing needs in different contexts. In addition, visual documents have richer textual and visual information that was not exploited by existing recommender systems. In this paper, we propose a new framework for context-aware recommendation of visual documents by modeling the user needs, the context and also the visual document collection together in a unified model. We address also the user's need for diversified recommendations. Our pilot study showed the merits of our approach in content based image retrieval.

Published in:

Multimedia, IEEE Transactions on  (Volume:10 ,  Issue: 1 )