By Topic

Deriving Quantitative Structure-Activity Relationship Models Using Genetic Programming for Drug Discovery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Genetic Programming is a heuristic search algorithm inspired by evolutionary techniques that has been shown to produce satisfactory solutions to problems related to several scientific domains [1]. Presented here is a methodology for the creation of Quantitative Structure-Activity Relationship (QSAR) models for the prediction of chemical activity, using Genetic Programming. QSAR analysis is crucial for drug discovery since good QSAR models enable human experts to select compounds with increased chances of being active for further investigations. Our technique has been tested using the Selwood dataset, a benchmark dataset for the QSAR field [2]. The results indicate that the QSAR models created are accurate, reliable and simple and can thus be used to identify molecular descriptors correlated with measured activity and for the prediction of the activity of untested molecules. The QSAR models we generated predict the activity of untested molecules with an error ranging between 0.46 -0.8 on the scale [-1,1]. These results compare favourably with results sited in the literature for the same dataset [3], [4], Our models are constructed using any combination of the arithmetic operators {+, -, /, *}, the descriptors available and constant values.

Published in:

Information Technology Applications in Biomedicine, 2007. ITAB 2007. 6th International Special Topic Conference on

Date of Conference:

8-11 Nov. 2007