By Topic

Clustering Spatial Data with Obstacles Constraints by PSO

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xueping Zhang ; Liaoning Technical University Fuxin,Liaoning ; Fen Qin ; Jiayao Wang ; Yongheng Fu
more authors

This paper proposes a particle swarm optimization (PSO) method for solving Spatial Clustering with Obstacles Constraints (SCOC). In the process of doing so, we first use PSO to get obstructed distance, and then we developed the PSO K-Medoids SCOC (PKSCOC) to cluster spatial data with obstacles constraints. The experimental results show that PKSCOC performs better than Improved K-Medoids SCOC (IKSCOC) in terms of quantization error and has higher constringency speed than Genetic K-Medoids SCOC (GKSCOC).

Published in:

Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference on  (Volume:3 )

Date of Conference:

24-27 Aug. 2007