By Topic

A Hybrid Method of Feature Selection for Chinese Text Sentiment Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Suge Wang ; Shanghai Univ., Shanghai ; Yingjie Wei ; Deyu Li ; Wu Zhang
more authors

Text sentiment classification can be extensively applied to information retrieval, text filtering, online tracking evaluation, the diagnoses of public opinions and chat systems. In this paper, a kinds of hybrid methods, based on category distinguishing ability of words and information gain, is adopted to feature selection. For examining the impact of varying the feature dimension to classification results, using corpus of car reviews, feature dimensions, 1000, 2000 and 3000 are adopted in our experiments. The experiments classification results indicate that the hybrid methods are best with feature dimension equal to 3000, and the result by using hybrid methods is superior to that by directly using information gain. In our experiments F value can achieve over 80%. Finally, some mistake examples are employed to indicate the limitations of methods in this paper.

Published in:

Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference on  (Volume:3 )

Date of Conference:

24-27 Aug. 2007