By Topic

A Chaos-Based Predictive Algorithm for Continuous Aggregate Queries over Data Streams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yaxin Yu ; Northeastern University Shenyang, Liaoning, 110004, China ; Guoren Wang ; Can Chen ; Chong Fu

It is very important to predict the future value or trend of continuous aggregate queries over data streams. But so far, many research works over data streams, especially from database field, have been focusing mainly on the approximate query processing. Although there are a few literatures to discuss the prediction issues of continuous aggregate queries over data streams, none of them allow for the effect that inherent characteristics of stream data itself imposed on prediction. The chaotic property shows some inherent principle, which would influence the stream's future behaviors. Based on this, a novel chaos-based online predictive algorithm for continuous aggregate queries is proposed in this paper. This algorithm borrows local approximation prediction of chaotic time series to forecast the future values of stream data. The extensive experimental results show that the proposed algorithm has higher performance and provides better prediction of aggregate values over data streams.

Published in:

Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference on  (Volume:3 )

Date of Conference:

24-27 Aug. 2007