By Topic

Fuzzy Rough Modeling Approach: Based on Fuzzy Clustering and GA Search Strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dongbo Zhang ; Xiangtan Univ., Xiangtan ; Yaonan Wang

A method to construct fuzzy rough model is proposed. By means of adaptive Gaustafason-Kessel (G-K) clustering algorithm, fuzzy partition can be accomplished and corresponding fuzzy clusters are achieved in data space. Then based on the search of cluster number and attribute subsets through GA search strategy, optimal FRM will be found, and a decision model can be built. The experiment results indicate that FRM method is superior to traditional Bayesian and learning vector quantization (LVQ) methods, moreover, it has more powerful generalization ability. Also, experiment results show that it is favorable to obtain better FRM model if the search of reductive attribute subsets is considered.

Published in:

Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference on  (Volume:3 )

Date of Conference:

24-27 Aug. 2007