By Topic

One-Sided Fuzzy SVM Based on Sphere for Imbalanced Data Sets Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Learning from imbalanced data sets presents a new challenge to machine learning community, as traditional algorithms are biased to the majority classes and produce poor detection rate of the minority classes. This paper presents a one-sided fuzzy support vector machine algorithm based on sphere to improve the classification performance of the minority class. Firstly, the approach obtains the minimal hyper sphere of the majority class; secondly, it uses the center and radius of the hyper sphere to give the fuzzy membership of the majority instances, and thus effectively reduces the influence of majority noises and redundant instances in the classification process. Experiments show that our new approach improves not only the classification performance of the minority class more effectively, but also the classification performance of the whole data set comparing with other methods.

Published in:

Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference on  (Volume:2 )

Date of Conference:

24-27 Aug. 2007