By Topic

On Behavioral Metric for Probabilistic Systems: Definition and Approximation Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Taolue Chen ; CWI, Amsterdam ; Tingting Han ; Jian Lu

In this paper, we consider the behavioral pseudometrics for probabilistic systems. The model we are interested in is probabilistic automata, which are based on state transition systems and make a clear distinction between probabilistic and nondeterministic choices. The pseudometrics are defined as the greatest fixpoint of a monotonic functional on the complete lattice of state metrics. A distinguished characteristic of this pseudometric lies in that it does not discount the future, which addresses some algorithmic challenges to compute the distance of two states in the model. We solve this problem by providing an approximation algorithm: up to any desired degree of accuracy epsiv, the distance can be approximated to within epsiv in time exponential in the size of the model and logarithmic in 1/epsiv. A key ingredient of our algorithm is to express a pseudometric being a post-fixpoint as the elementary sentence over real closed fields, which allows us to exploit Tar ski's decision procedure, together with binary search to approximate the behavioral distance.

Published in:

Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference on  (Volume:2 )

Date of Conference:

24-27 Aug. 2007