By Topic

Canary Replica Feedback for Near-DRV Standby VDD Scaling in a 90nm SRAM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jiajing Wang ; Virginia Univ., Charlottesville ; Calhoun, B.H.

Canary bitcells act as online monitors in a feedback architecture to sense the proximity to the data retention voltage (DRV) for core SRAM bitcells during standby voltage scaling. This approach implements aggressive standby VDD scaling by tracking PVT variations and gives the flexibility to tradeoff between the safety of data and decreased leakage power. A 90 nm 128 Kb SRAM test chip confirms that the canary cells track changes in temperature and VDD and that they provide a reliable mechanism for protecting core cells in a closed loop VDD scaling system. Power savings improve by up to 30times compared with the conventional guard-banding approach.

Published in:

Custom Integrated Circuits Conference, 2007. CICC '07. IEEE

Date of Conference:

16-19 Sept. 2007