By Topic

Real-Time Incremental Segmentation and Tracking of Vehicles at Low Camera Angles Using Stable Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Neeraj K. Kanhere ; Clemson Univ., Clemson ; Stanley T. Birchfield

We present a method for segmenting and tracking vehicles on highways using a camera that is relatively low to the ground. At such low angles, 3-D perspective effects cause significant changes in appearance over time, as well as severe occlusions by vehicles in neighboring lanes. Traditional approaches to occlusion reasoning assume that the vehicles initially appear well separated in the image; however, in our sequences, it is not uncommon for vehicles to enter the scene partially occluded and remain so throughout. By utilizing a 3-D perspective mapping from the scene to the image, along with a plumb line projection, we are able to distinguish a subset of features whose 3-D coordinates can be accurately estimated. These features are then grouped to yield the number and locations of the vehicles, and standard feature tracking is used to maintain the locations of the vehicles over time. Additional features are then assigned to these groups and used to classify vehicles as cars or trucks. Our technique uses a single grayscale camera beside the road, incrementally processes image frames, works in real time, and produces vehicle counts with over 90% accuracy on challenging sequences.

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:9 ,  Issue: 1 )